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Optimal Designs For Comparisons

Between Two Sets of Treatments

..

By

DibenMaumarDTIC
University of Illinois at Chicago ELECTE

FEB 22 M.
Abstract

Suppose v treatments are to be compared in b blocks

of size k each. Also suppose that the treatments are divided

into 2 sets of u and w = v - u treatments. A-optimal designs

are obtained for estimating all the differences of two treat-

ments, one from each set. Optimal row-column designs are

also obtained. -Some new optimal designs for comparing

several treatments with a. single control are obtained as

special cases.>

AMS 1980 subject classification. Primary 62K05; Secondary 62KI0..

jeK_ words d 4phraess  A-optimal designs, block designs,
row-column designs, comparisons between two sets of
treatments, control-treatment comparisons, several
controls.
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-. 1. Introduction

We consider an experiment to compare v treatments in

* b blocks of size k each. The model of observations is

:* assumed to be linear, additive and homoscedastic. The

problem is to determine an optimal design, that is, an

allocation of treatments to blocks that is best in some

sense.

The criterion of optimality depends on the objective of

the experiment. If the objective is to compare all treatments

" with one another, then Kiefer, in a series of well known

publications, and other authors have determined families of

optimal designs. One celebrated result is that a BIB design

is optimal in any reasonable sense (Kiefer (1975)).

In many experimental situations, all comparisons between

treatments are not equally important. For example, one

treatment may be a standard treatment or a control, enjoying

a special status. The rest of the treatments (test treat-

ments) are to be compared with the control - comparisons

among test treatments not being of much importance. Some

optimal designs for these experiments are now available in the

literature. To get started in the area, the reader may look

0at Pearce (1960), Bechhoffer and Tamhane (1981), Majumdar 0
and Notz (1983), Giovagnoli and Wynn (1983), Constantine (1983),

Hedayat and Majumdar (1984), Jacroux (1984), Notz (1984).

* This is a list of some, though not all, important papers. odr$
O-r
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More generally, the treatments may be divided into two

o sets, say G and H containing U and w = v - u treat-

ments respectively. All comparisons of two treatments, one

*W from G and one from H are important, but comparisons within

G or within H are of less consequence. In case one treat-

ment is a control, we take u = 1. Similarly, experiments

could be conducted to compare several treatments

with two or more standard treatments. For example, a factory

may be using two types of equipments for a job. The object

of an experiment could be to determine whether some or all

of three types of new equipments are better than the existing

ones. In this situation of several controls, both u and w

are 2 or more. Farmers often use several varieties at the

same time, since each of them could be suseptible to a different

disease. Thus, in agricultural experiments, the object could

be to determine which "package" of varieties perform better;

or whether some variety from one package should be replaced

by a variety from another.

In this article we consider the problem of finding optimal

designs for these and similar situations. Cox (1971, p. 238)

suggests that if there are several controls, then each of them

may be used once in each block. The rest of the design would

be a BIB design in the treatments from the other set. We ..

shall formulate the problem mathematically in the tradition of

Kiefer. Our criterion will be the sum of the variances of

the treatment differences, one from each set. This criterion

* **°. * .. .°.. *. . .-. *o
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is statistically meaningful in this context.* We shall derive

several methods of obtaining optimal designs - applicable

under different types of experimental situations.

In Section 2 we look at experimental situations with blocks

of small size; that is, k is small compared to ui and w.

We develop a method of obtaining optimal designs in Theorem

2.1 and obtain some additional refinements for the case

u =w, in Corollary 2.2. When u =w, intuition suggests

-that the best design might have half of each block filled by

treatments from G, and the other half from H (some adjustments

being needed for odd k's). While we can essentially prove

this for k a 4, surprisingly it is not true when k = 2.

We also-give a catalog of optimal designs for some values

of u and w when k =2 and b &l10.

In Section 3, we look at blocks of large size. The method

of proving optimality is entirely different here. We prove a

theorem applicable to any linear model, and derive optimal

block designs in a corollary. This also yields previously

unknown results for the case of a single control.

The general theorem of Section 3 is applied to models

eliminating two sources of heterogeneity in Section 4. This

gives us optimal row - column designs. As a consequence we

could generalize some results of Notz (1984) for the case of

a single control.

-. ._ ,.
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2. Optimal Designs in Small Blocks.

We consider the problem of comparing v treatments in b

blocks of size k each. The treatments can be divided into

two sets G and H of u and w (=v-u) treatments respectively.

For this section only, we assume that k is small; indeed

we insist that

k min (u, w) (2.1)

The model is additive,homoseedastic and linear. This means

that if Y is the observation on treatment i (1 a i a v)

in block J (1 a j A b) and plot t ( 1 s ' s k), then

Y + + + (2.2)

where e i _ are assumed to be uncorrelated random variables

with mean 0 and common variance 2 The unknown constants

I- and 1_ represent the effect of treatment i and the

effect of block J respectively. Let L(u, w, b, k) be

the set of all possible experimental designs. The purpose of

the experiment is to compare each treatment from G with

each treatment from H. Comparisons within G and H are of

secondary importance and will play no role in the selection

of a design. We want to choose an experimental design from

&(u, w, b, k) which minimizes

-2 Ad Aa E Var(rdg 'dh) (2.3)

gEG hER

as d varies over all of (u,w,b, k). Here -dg %h

denotes the BLUE of v - 'h under design d. This criterion

can be called the A-criterion since the optimal design
o -%
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minimizes the average variance of the contrasts of interest, 2.2

STg - 'h' g E G, h E H. The A-criterion is expected to be

generally acceptable in most situations since it is statistically

meaningful.

If d E 9(u, w, b, k), then we denote by ndij(O s ndiJ c k)

the number of times treatment i occurs in block J.

Nd = (ndij) is the incidence matrix of d and

Cd = Ddr - (lA)NdN is the "C -matrix." Here Ddr is a

diagonal matrix consisting of the replications of the treat-

ments.

Let us denote by i n  and In the vector of n ones and

the nv n identity matrix respectively, and let J = I V

Write -

= ...... ...... 0 -I ]

a w x v matrix in partitioned form. If

P1 = ."'" P1]

then (2.3) can be written as a function of Cd in the form

O(Cd) = tr P CdP' = I: tr PjCdPi..

where Cd is any generalized inverse of Cd. The following is

a useful subclass of v x v matrices.

C ( (C : C is nonnegative definite, rank C = v - 1,

I v =0 and for some scalars p, q, r, s and t, C

can be written as

.*. . " " I
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t Jw rA +  Jw)

For each d E t(u, w, b, k), we define

b
T dlj E n d g j ' Td2j hE dhj' Tdl j lj

gEG hEH

b b T2 b 2 WearTd2 E = T ,I S dl j r. 1i dlJ S d2 E Tj d2j" We are

J=1 dlJ~ 2 -~ aj

now in a position to state and prove tne main theorem of this

section.

Theorem 2.1. Suppose d0 E (u, w, b, k) is such that

(i) Cd E C, (ii) nij = 0 or 1 for all i,j and

(iii) f(Ta 1 ,S 1)= Min f(Tdl,Sdl) where

d 0 dED(u, w, b, k)
f(Tdl, = Sl--/(kTdl - Sdl)+ (w-l) 2 /4w(k-l)-k)Td2

+ Sd2 ] + (u-l)2/[(u(k-l)-k)Tdl + S dl, then do  is A-optimal

in &(u, w, b, k).

Proof Let TI be the set of all permutations v of the

treatments which can be expressed as a product n =

where rg is a permutation of G and v h a permutation of

H. Let Q(r) be the corresponding permutation matrix. Then

it is easy to see that

O (Cd) = (Q(TT)C d Q()'),

S~ * ., * * *..~. -* .,...-
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Moreover, o(Cd) is convex in Cd. These two properties imply

that

O(c) (Cd)

where Cd = (ZE(Q(ff)CdQ(1T)')J/uw: where E is over all n.

in I.
u

Clearly Cd EC with p+q= 2, Cdgg/u q= Z cdgg,
g=1 g g' =.

V V
u(u-l), r + s =dc,/ww-d

h=u+l Cdhh/W, s = hh'=u+l /w(w
U V

and t = Cdghuw. Here, we write G =(,2,...,u},
g=l. h=u+ 1

H = (u+l,...,vj. To evaluate o(C*) we must find the eigen-
d

values and eigenvectors of Cd . The eigenvalues can be obtained

from Constantine (1981). In fact, we can express C* in its

spectral form as

Ca = pE1 + rE 2 -(vt)E,

I I J
where E u uu

0 0 wJ2  uwj
E2 = IW - , uwvE3 = 2

J dlWL ww

The Moore-Penrose inverse of Cd  is

Cd E1 + r E 2  E.
Hence,

(Cd) = trace PC d+P' = w(u-l)/p + u(w-l)/r- l/t, with

b u 2
p T dl / S E (ndgj -T /u)A(u-l),

J=l g=l ...

S..._ ..*.-%*,"
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r0 Tb V ( 2
r 2 1w E - Td2j/w) /k(w-l)

J=l h=u+l

b
1= t dlj Td2j dl-dl

Let us fix Tdll,...,Tdlb and try to reduce O(Cd).

Since, by condition (2.1), TdlJ/u a k/u & 1,

b u 2
E r (n T- U 2: Ubj~. g (ndgj " 'lJl ) - Td - Sdl/U.J-1 g--l--

with equality whenever n = 0 or 1, for all g and J.

Similarly, since Td2J/w : 1,

b V 2
Ir T (n T w) T -

=1 iJu+l ndhj " Td 2 j Td2  'd2

with equality whenever n = 0 or 1, for all h and J.

These relations yield a lower bound to O(Cd) for fixed

values of Tdll,...,Tdlt. After some simplifications, we get

d(Cd k O(Cd) a" u w f(Tdd.

Hence the theorem.

Remark 1. We can write f(TdlSdl) as a function of Tdl

and Sdl only since Tdl + Td2 = bk and kTdl - Sdl = k Td2 Sd2.

To carry out the minimization of f(TdlSdl) it could

" be useful to introduce integers bd (cO,l,...,k), where

P'° !"
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bda is the number of blocks for which Tdlj a- In this
k k k

- notation b= E bd, Tdl r b and Sdl Z abda.

*The problem reduces to minimizing f(TdlSdl) = f*(bdo,..•,bdk)

over integers bda (a= O,l,...,k), where each bda = Ol,...,b
k

* and b = b If k is small then this problem is not
-0c dc

too time consuming. For example, when k = 3, u = 3, w = 4

and b = 30, the optimal values ba of bda are b 0 ,

. bI = 18, b2 = 12 and . = 0. For a clearer representation,

we shall denote the treatments in G by numbers (1,2,...)

and the treatments in H by alphabets (AB,...). The

following design, with columns as blocks, is A-optimal in

G(3, 4,30,3).

1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
2 3 3 2 33 23 3AAABB C AAA BB C AAA BB C
AAA BBBC C C B CD CDD B CD CDD B CD CDD

One attractive feature of this example is that only two optimal

b. bafs are positive. A study of f(Tdl,Sdl), with some examples,

shows that this may not be true, in general. Thus, there is

*i- no guarantee that the treatments from H, as a collection, are

spread as homogeneously as possible over the blocks, which

often happens when u = 1, the single control case (Majumdar

and Notz (1984)).

When k = 2, the problem is to minimize 1/bdl

+ (u-l)/(bdl + (2 u/(u-l))bd 2 ) + (w-l)/(bdl + (2 w/(w-l))bdo),

- . ... . . . . . . . . . . . . .

. .. . . . . . . . . . . . . . . ...- **.-.-..*-

1 I l -. .. i. i i
I

i I. I I
I

. I I I I l • " " -. S .t**i t.I ...lrtrn..tZ l -" % (
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over integers in the region bd0 + bdl + bd 2 = b. If the

* optimal bda is denoted by b then the necessary and

" sufficient conditions for obtaining an optimal design by the

method of Theorem 2.1 are b0 u O(mod w(w-l)/2), b1 z 0 (mod uw)

and b 0 (mod u(u-1)/2). We shall denote by al!a the2 1 2l)2)
set of all a2-ples which can be chosen from a set of a1

treatments. Also let di denote mI copies of w Z 2 in

the treatments from H, d3  denote m3 copies of u S 2

from G and d2 denote m2 copies of the uw pairs of

treatments formed by matching a treatment from G with a

treatment from H. Here b0 =m 1 w(w-l)/2, bI  M 2 uw and

b2 = m3 u(u-l)/2. When the necessary and sufficient conditions

are satisfied the A-optimal design is

d = d0 U d1 U d2 -

We searched and found A-optimal designs for k = 2 in the

range v a t g 100 for treatments (u,w) = (2,2), (2,3),

(2,4), (2,5), (2,6), (3,3), (3,4). The catalog of A-optimal

designs produced by Theorem 2.1 for these values of the

parameters are given in Table 1. This table gives the optimal

values bo, b1 and b2 for combinations of u, w and b.

For example, when u = 2, w = 3, and b = 22, Table 1 shows that

b0  3, bI = 18 and b= 1. Therefore an A-optimal design
-0 b1  b2

in A(2,3,22,2) is

."V .". * "..**,". . . . . . . . .".. . . . . . . ..-. . ..""...-2•' . -"-" .. ' """ "". " """ . -" '-" " .'-" , - -" "-".". .% ."/ .
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2 A A A A A A B B B B B B C C C C C C B C C

Actually, our search was more extensive. It included all (u,w,

. b) valueswith 2&u•6, usw %6 and vfb •.100.

For some of these (u,w) combinations no optimal design

could be obtained by Theorem 2.1 for b x 100.

Given u,w and b, Theorem 2.1 could give an optimal

design. In case it fails to do so, it still gives a lower

bound to the A-value, $(Cd), for a d E D(u,w,b). Usually

the experimenter has a fairly good idea of what an efficient

design looks like. By comparing the A-value of a design with

the lower bound given by Theorem 2.1 he will be able to

make a good assessment of the efficiency of his design. At

"- the very least, this is expected to be the practical usefulness

of Theorem 2.1.

The combinatiorial restrictions imposed on do by the

condition Cd E C are quite severe. Construction of an
0

A-optimal design will, in general, be a difficult task.

In case w = u, one can obtain a simplification of Theorem

* 2.1. This is given in Corollary 2.2.

Corollary 2.2. Suppose w - u and k a 4. Let d0 E ;(u,u,b,k)

be such that

(i) ndij = 0 or 1, 1 1,...,v, J 1,...,b.

0.
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(P) C+ P +qqJ t
0 t i u " .-

u-

for some p, q and t.

(iii) Tdlj = k/2 when k is even

= [k/2] or [k/2) + 1 when k is odd

for each j = 1,...,b, where (m] denotes the largest integer

not exceeding m. Then d is A-optimal in 4(u,u,b,k).
0

Proof. Let d e A(u,u,b,k). Start by defining Cd, the

average of Cd over all permutations in T, as in the proof

of Theorem 2.1. Then define

* l (0 Iu, (0 I1 .-,: ..

Uc( 'U)Cdl (1 0 ) d (1 0 j .::

and Cd  - (C + Cdl)/2. Observe that o(Cdl) = 0(Cd). B

the convexity of 0,

O(Cd) $ (C) :"

PI + qJu tu** I uU v -..

Clearly, Cd - u puqJuu where p+ q = c /v,
duu PI uJu/ dii.

.- :.:
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U v
q= E c + C E cd #)/2u(u-l),h hh

' g'=l dgg' h4h'=u+ 1'

u v 2
'g=l h=u+l C )

-(cd ) = 2u(u-l)/p - l/t.

Some computations and an appeal to condition (2.1) yield,

p a (b k(k(u-1) - u) + S d)/ku(u-1)

with equality whenever ndi j = 0 or 1 for all i, J. Here
dib 2 2

S= Sd + Sd2. Recall that t = - T Td2J/ku2= -
b J=1 2

where we write 'd = TdlJ Td2  . Since Yd = (bk Sd )/2,

(Cd') 2 ku2 l/'Yd + lu(u-) /(uk(k-l) - 2 (d).

It is easy to see that, Max Td is achieved when

Tdlj = k/2 when k is even

C [k/2] or [k/2] + 1 when k is odd,

for each J = l...,b. In either case, Max kd "k2/4. Let

°- us study the function

a (d) , l/7d + #(u-1) /(buk(k-1) - 2Td).

*-' a(7d ) is convex in 'd and

3&=('Ya)ld = a,(Yd)/('y (buk (k-l) -',d) 2 )

'....................................' ..



1

where a(T) = 8(u-l)'ya (buk(k-l) 2d )2 . Using some
1iord U a1(bk2/lcalculus one can show that, for each u a 2, al(bk2/4) < 0

whenever k a 4. Hence a(7d) is a minimum when Td is

a maximum. This establishes Corollary 2.2.

Table 1 shows that Corollary 2.2 need not hold when k- 2.

* For k = 3, the question is open.

In some situations an experimenter may be interested only

in comparing the sets of treatments G and H each taken as

a whole. In agricultural experiments the object could be to -

determine which of the groups, G or H, results in the best .

overall yield. Here the problem could be to compare the averages

Sr g/u and H rh/w. So, we have to choose a d in
gEG heA 

A
t (u,w,b,k) which minimizes Var( E odg/U - Z 'dh/W)

geG heH
Along the lines of Theorem 2.1 it can be shown that if

Cd e c, and TdlJ = k/2 if k is even and TdlJ C k/2]-"

or [k/2] + 1 if k is odd for all j, then d o is optimal.

In fact, no restriction on k, like condition (2.1), is necessary

for this result.

3. Optimal Designs In Large Blocks

In this section k will usually be large, so that

condition (2.1) is not assumed any more. We shall start by

proving a general result for Gauss Markov models, and then

derive A-optimal designs for particular models.

Let A be the set of all designs. If d e b then the

*..*-V. . . . .. ~ *... . . . . . . . . . .. -<
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observations Yd will have the Gauss Markov model

E(Yd) - Xld 1 + X2d
3
2  Var(Yd) a I.

Here the vectors 91,02 and the scalar a2 are the unknown

parameters. We will assume that XXld is nonsingular for

all d e 3. Define

C d dXld X.ldX2d(X 2 dX2 d)XidXld

If * is a real valued function defined on nonnegative definite 7-.

matrices then do will be said to be * - optimal for L

estimating QaI , if

b(QC aQ') C ;(Q for all d e
d0

Theorem 3.1. Let * have the property that J(A-B) a ,(A)

whenever A, B and A -B are nonnegative definite. Suppose

do e Z satisfies

X 1x X 1Q 0(31
2d0 ld 1Xd0 1ld0 )

and

*(Q(Xid Xld (Q (X (.)
id0 ld0 l~

for all d e C.

Then do  is -optimal for estimating Q*I .

0.- ".,. ..

. . . . . . . . . . . . . . . . . . . . 5.* *55** ~% *z. __ j

- . ~ .S S *.S° S.* .
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* Proof. Suppose A is a positive definite matrix, B is a

*nonnegative definite matrix and C =A -B is also nonnegative

* definite. Let Q, be a matrix with ttn(Q') a !M(C), where 1 '

denotes the column span of a matrix. Then it can be shown that

*QC Q' QA' if BA-' ' 0 .

* Hence for every d E Zp

*(Qc- Q' , *(Q(Xid Xl )lQI) by (3.1),
0 0 0

a *(Q(Xll d k by (3.2),

ldl) 3Q

*since there exists a generalized inverse Cd for which

Cd - -lis nonnegative definite. This establishes

the theorem.

We shall apply this theorem to the block design model

*given in (2.2). Here 91~ and 9; (1991

For a design d e C(u,w,b,k), XIldXl = Dd teiaol

*matrix showing the replications r dl,..-,r dv of the treatments;

X~dXd =klb X X~ Nd the treatment block incidence

matrix. Let the treatments be divided into two sets G and

*H, as in Section 2, and suppose Q is the matrix P defined

in Section 2, . trace. Equation (3.1) is satisfied whenever

d~ dr = v

for some diagonal matrix a. To find a design d0 which

.. - .** .. * .. *,* .- *.***p''*0
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satisfies (3.2) one has to minimize

U V

E E +(3.4&)
g=1 hmu+l dg dh

over all designs d e 9(uw,b,k). In (3.•) we are actually
A

minimizing tr V(POld),but for a model with no block effects
I, , while (3.3) is similar to a treatment-block

orthogonality condition. Corollary 3.2 gives one class of

optimal designs.

. -.

Corollary 3.2. Suppose k a O(mod (u + uw)) and

k * O(mod (w + /uw)). Let d 0 e (u,wb,k) satisfy

dgJ k/(u n J k/(w + Jw), (3.5)

for g = l,•••,u, h = u + ,..., v, J = l,w,...,b• Then

d is A-optimal in A(u,wb,k).

Proof. Consists of verification of (3.3) and a straightforward

solution of (3.4) using Lagrange's multipliers.

Remark. In particular when u = 1, we have the case of a

single control in G and w = v - 1 test treatments in H.

Corollary 3.2 says that as long as

nd0 iJ = w nd jj

".
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for each i = 2,...,v and J = l,...,b, then the resulting

design is A-optimal for control-test treatment comparisons. Here

the control is denoted by 1, and the test treatments by

2,...,v. To our knowledge, the result is not available in the

literature.

4. Optimal Row Column Designs.

Suppose v treatments are to be compared in an r x c

array. The response YiJt in row j and column t is

YiJt - 0J + nt + i + iJt'

if treatment i is used in cell (J,t); i = l,...,v, J =

t = l,...,c. Here p. is a row effect, nt is a column
at

effect, Ti is a treatment effect and e ijt is a random error.

As usual, e's are assumed to be uncorrelated, with zero
2

expectation and variance a . The treatments are divided into

two sets G and H of u and w treatments respectively.

L(u,w,r,c) denotes the set of all designs.

We shall apply Theorem 3.1 to this setup. Take
eOl = ''r and =l'''9'c) As in

Section 3, dO C L(u,w,r,c) is A-optimal if

I0
____ ~ *** . . .. ~ . * .* * ~ ., ~ ** *. ~*.*~. - - °
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Sld 0d 0r = ~lrv
(4.2)

'2d &u~ 2  cv,

for diagonal A~and 2,and if do minimizes the expression20

*(3.4). For a design d, we have used N ld to denote its

treatment-row incidence matrix and N 2d its treatment-column

*incidence matrix. In the following corollary (A)ij denotes

the (i,j)th entry of a matrix A.

-Corollary 4.1. Suppose r *0(mod(u +./uw)), r *0(mod(w+iiuw)),

- c a 0(mod(u+duw) and c a0(mod(w+ juw~)). Let d0 S IC(u,w,r,c)i0
satisfy

(N ld0)gj (N c(+ii ld )hj=

I (4.3)

(N2d0)gt =r/(u+iiii), (N2 d 'ht= r/w1i)
0

for g l= ee 1, . i h =u + 1,..., v, j= r,.r t=

Then d0 is A-optimal in ,"(u,w,r,c).

This corollary can be proved along the lines of Corollary

3.2. Let us describe one class of designs which satisfy

(4.3). Let m be an integer and consider a latin square of

order s = m(w+ 1u). Change any m symbols of the latin squar-e

*to A, any other m symbols to B, and so on. A,B,..,.. denote

F~.7
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the treatments in H, while 1,2,... denote the treatments

in G. Change m(J-7i) symbols to 1, m(./w') symbols

to 2, and so on. Call the resulting square L Obtain

L12 by starting with the same or a different square, and doing

similar operations. Get squares Lij, i = 1,2,..., q

j = l,2,...,q 2 , in this fashion. Form the sq1 X sq2  array

L = ((Lij)). Then L is an A-optimal design in D(u,w,

sql, sq2). There are plenty of pairs (u,w) for which this

method can be used - for example u = 4, w = 16.

This method of construction is a development on a method

used by Notz (1984) for control-treatment comparisons. Indeed,

Corollary 4.1 with u = 1 generalizes Corollary 2.1 of Notz.

Our proof is also different. Corollary 2.1 of Notz states that

if one starts with a latin square of order p + p and

changes the symbols p + l,..,p 2 + p to 0 (the control)

then the resulting design is A-optimal in L(l,p ,p +p,p +p).

We can go a little further than this result of Notz for

control-treatment comparisons. If Li (i = 1,2,..., q1 3

J = l,2,...,q 2 ) are (p2 + p) X (p2 + p) squares obtained by

Corollary 2.1 of Notz, then the array ((Lii)) is A-optimal

in A(l,p 2 , (p 2 + p)q 1 (p 2 +p)q 2 ) For example, let p = 2, I-

ql = 2 and q2 = 3. Then this method will give a patchwork

of six 6 x 6 squares which is A-optimal in Z(1,4,12,18).

There are other methods of obtaining an A-optimal design too.

For example, the layout,

o .
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Co SII S12

S21  Co22
L2s 31 s 32 Co 2

is A-optimal in D(1,4,12,18). Here Co is a 4 4 4

square consisting only of the control.Sij(i = 1,2,3 ; J = 1,2,3)

are 4 x 4 latin squares consisting of test treatments only.

1 and L2  are 6 x 6 squares obtained by Corollary 2.1

of Notz (1984).

The optimal designs of Corollaries 3.2 and 4.1 have a

certain model robustness property. For instance, designs

specified by (4.3) remain A-optimal, by Corollary 3.2,

in case row effects are absent (Pj = Op j = 1, 2,..., r),

and even when column effects are also absent (j = 0, J 1,2,..,,r;

nt = 0, t = 1,2,,,,,c).

The technique of finding optimal designs, given in Theorem

3.1, can be easily extended to additive models eliminating

several sources of heterogeneity. This would generalize

Corollary 4.1.

Finally we would like to point out that all the A-optimal

designs given in this article are also optimal under several

other criteria. One of them is MV -optimality. An MV

optimal design minimizes

A Ad  :
Max Var( d - h,

g G, hEH g

• :..'., :.' 'e. .p . -. '*.*.. .. '. -..'% . . .*.* ." .'. . *. ..' ...... .,\ .' - .'.' . .. ~.. '... .... . ..-.' .'..€ .-'-.-.-c.-
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among all d e L(1,W.,b.,k) or all d e b(u~w,r,c), as the

case may be.

.~~~~~~ .



REFERENCES

BECHHOFER, R. E. and TAMHANE, A. C. (1981). Incomplete
block designs for comparing treatments with a control:
General theory. Technometrics 23 45-57.

CONSTANTINE, G.M. (1981). Some E-optimal block designs.
Ann. Statist. 9, 886-892.

CONSTANTINE, G. M. (1983). On the trace efficiency for
control of reinforced balanced incomplete block
designs. J. Royal. Statist. Soc. (B) !5 31-36.

COX, D. R. (1958). Planning of Experiments, Wiley, New York.
GIOVAGNOLI, A. and WYNN, H. P. (1983). Schur-optimal

continuous block designs for treatments with a
control. Proc. in honor of Neyman and Kiefer,
Berkeley.

HEDAYAT, A. S. and MAJUMDAR, D. (198.). Families of A-optimal

block designs for comparing test treatments with a
control Ann. Statist. To appear.

JACROUX, M. (1984). On the MV-optimality of block designs
for comparing test treatments with a standard treat-
ment. Tech. Report, Washington State University.

KIEFER, J. (1975). Construction and Optimality of generalized
Youden designs A Surve of Statistical Design and
Linear Models iJ.-Srivastava ed.) North Holland, N.Y.,333-353.

MAJUMDAR, D. and NOTZ, W. (1983). Optimal incomplete block
designs for comparing treatments with a control.
Ann. Statist. 11 258-266.

NOTZ, W. (1984). Optimal designs for treatment-control
comparisons in the presence of two-wpy heterogeneity.
Tech. report 484-9. Purdue University.

PEARCE, S. C. (1960). Supplemented Balance. Biometrika
47 263-271.



TABLE I Showing Optimal bo , b, And b When k = 2,
2

For Various u, w AND b S 100.

u w b b 0  bL b2  u w b b0  b I  b2

2 2 4 0 4 0 2 3 22 3 18 1
2 2 10 1 8 1
2 2 14 1 12 1 2 3 38 6 30 2

2 2 20 2 16 2 2 3 60 9 48 3
2 2 24 2 20 2 2 3 76 12 60 4
2 2 28 2 24 2 2 3 99 15 78 6
2 2 30 3 24 3
2 2 34 3 28 3 2 4 31 6 24 1
2 2 38 3 32 3 2 4 86 18 64 4

2 2 44 4 36 4
2 2 48 4 40 4 2 5 41 10 30 1
2 2 52 4 444
2 2 54 5 44 5. 2 6 52 15 36 1

2 2 58 5 48 5
2 2 62 5 52 5 3 3 24 3 18 3
2 2 68 6 56 6 3 3 57 6 45 6

2 2 72 6 60 6 3 3 81 9 63 9
2 2 78 7 64 7
22827 687 3478 1260 6

2 2286 7 72 7
2 2 88 8 72 8
2 292 8 76 8
2 2 96 8 80 8
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